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ON THE FAST ROTATION OF A HEAVY RIGID BODY ABOUT A FIXED POINT* 

V. N. ROGAEXSKII and L. A. OSTRER 

Fast rotation of a symmetric heavy rigid body about a fixed point (thekineticenergy 
is large in comparison with the potential) is considered in cases when the resonance 
equations of Euler's motion /1,2/ are approximately satisfied at the initial instant 
(the body is assumed to effect -i/e turns, t' is small, during time r-l. It is 
shown that during that time (I- i) a finite deviation from inertial motion takes 
place. Such mechanical effect is similar to the precession of a fast top, except 
that it is more "early" (in the considered time scale the top precession is slow). 
Approximate equations that define the motion in the principal order and are integr- 
able in quadratures. The formal process of derivation of higher approximations is 
indicated, and a geometric interpretation of motions is given. 

The concept of motion of a fast rotation of a heavy rigid body presented in /l/ assumes 
that the momentum vector “M performs a slow precession about the vertical, and the body rota- 
tion relative to M approximately conforms to Poinsot's equations". This is inaccurate: the 
two approximate integrals M2= A~@2+~')+ Cz+=~uqt and 2 T = A (p"+q2) -i-W =const may degener- 
ate into one, for example, when r is small they degenerate into the integral pl f q2 = const) 
and the approximate Poinsot motion does not generally follow from them, even during the time 
in which the precessionof M can be neglected. Here we consider cases when a finite diverg- 
ence from Poinsot's motion actually occurs. 

1. The equations of motion and the estimate of accuracy. Let us consider the 
"fast" rotation introducing the small parameter E so that during the time t- 1 the body 
performs ff l/e turns. We denote by PIE, qie, rfe the projections of the absolute angular vel- 
ocity of the body on the principal axes of inertia relative to a fixed point. For a symmetric 
body the equations of motion can then be written as (see, e.g., /3/) 

dP 
E ‘iii_ =I aqr - E';l,', dq e r = - apr -j- 8% [gy - (i - a) iv”] 

dr 
Edt 

(1.1) 

where 7, y', y" are the directional cosines of the vertical relative to these axes, the constant 
a is related to the principal moments of inertia 

and the constants E 
A,B,C by the formula A=B==C/(l-a), 

and 6 are proportional to deviations of the center of mass from the 
axis of symmetry and the equatorial plane of the ellipsoid of inertia, respectively. 

The initial conditions for (1.1) must be subjected to the condition p* + qa + ,A -1 (it 
will obviously remain valid by virtue of the energy integral). 

We shall call problem (1.1) perturbed, and problem 

(1.2) 

(with the same initial data) unperturbed. 
Euler equations of motion by inertia. 

Thus the unperturbed problem is defined by the 

which 
We shall consider problem (1.1) guided by the concept of the theory of perturbations, 
is based on the attempt of choosing a change of variables close to 

set 
identical, i.e. to 

p* = p i Ejl (P. . ., ye . ..) + . . . + E”fk (p 3 . . .; y, . . . . ), _..) (1.3) 

so as to have Sqs. (1.1) in the new variables p*,...,y*, . . . of a simpler form, but accurate 
within -&*'I. 

The estimate of accuracy is based here on the following simple fact. 

Theorem. 
special form 

Let us aSSume that the solution %(t, E), h,(t,~) of the perturbed system of 
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e~=ihvpv+~~‘FV(h,rp,e), e-f$=emG,,(h,q,~), v = 1. . . 1. i’ = -1. p = 1, . . . 1, ., II (1.4) 

satisfies for certain initial data the following conditions: 
Fv (A (t, sfY 'P (t, s), s) = 'f~ (t, E), G,, @ct. a), and 

1) h.3 are real, and 2) rp~ (t. E). 
'P (t, e), e) =g* ct. e) 

(i.e. 
are for 0 CC* t ,. C (E) = 0 (1) 

t& 1) bounded by constants independent of e and integrable with respect to Z. 
Let, moreover, (D,(t, F), .I,, = const be the solution of the unperturbed system 

for the same initial data as for cpu and A,,. 
Then, as e-+0 

I %I - h, 1 = 0 (F’“-‘), 1 ‘pv - Cb, 1 = 0 (e”‘-*) 

The proof follows from fozmulas 

A~I = h, (t, e) -em-l i &A(T, e)dr, QV (t, e)= (pv(t, e)- 

(1.5) 

(1.6) 

which can be tested by substitution into (1.5), 

Remark 1.1. For large tGQek the estimate can be similarly obtained. In our invest- 
igation we restrict the time to O<r<t. 

Formulas (1.6) show that the over-all approximation error CPV~*V,$ =$, is a quantity 
of order snVr which is generally small only for m>2. When cV = O(e), the error is cbvioue- 
ly small also for m= 2. Note that when m= 2 the first integrals of the unperturbed system 
are approximate integrals of the perturbed system. 

Turning to Eqs. (1.1) and (1.2) we set 

x=py + Qy' + (I- Q)ry", 91,s = q* ip (1.71 

Vs. 1 = - k2y" + (1 - a) rn * ik (a, - py’), k* = pa + q’ + (1 - a)% r2 

and under the condition that 
@* = p* ‘i- q* _ 1 (1.8) 

where 0 = O is a singular point for the substitution (1.7), pass to the new variables m,x, 

%I %1 93. %. Euler's problem (1.2) assumes the form 

where k is a supplementary ancillary variable, i.e. the form (1.5), and the perturbedsystem 
(1.1) assumes, respectively, the form (1.4), and m = 2. 

Further consideration of (1.8) with allowance for the above estimate enables us to con- 
clude that: 1) closeness to the initially Euler's motion (i.e. during time t1(e) cannot 
generally be guaranteed during the time t<i, and 2) if the substitution (1.3) can be 
such that in the new variables m >3 or, at least in the equations for h,,,=ccor and 
hSt4= f k the perturbation is <ea, the motion remains close to Euler's motion by inertia 
for t&l. Condition (1.8) remains satisfied, if it was satisfied at the initial instant, 
since o = const is the integral of Euler's motion (we recall that by virtue of (1.2) A = B 
and doldt = 0 . 

Let us first clarify when such substitution exists and, then concentrate our attention 
on cases when it is impossible (for the case of small o* see Remark 5.2). 

We begin by expounding the formalism of the theory of perturbations which will be sub- 
sequently used. 

2. The formalism of the theory of perturbations. We shall use a modification 
of the formalism in /4/ which is based on Lie transformation, which differs from the Deprit- 
Hori procedure in the application of Hausdwrf's formula, which in the authors' Opinion simpli- 
fies calculations. We present a purely formal exposition, bearing in mind that all expans- 
ions in the small parameter are assumed to be brought to a fixed order, and that the ClOse- 
ness of solution of the obtained approximate system of equations to the exact solution is to 
be established after its investigation. 
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Let us consider the system of differential equations 

dr. 
E~=fjo(~)$Efjl(5)$-... (j=l,...,n; S=(Z~,...,Z,,j) 

and the equivalent to it first order equation in partial derivatives 
n 

aF (I, J) E--;7T-=LF~(L~+EL~+E~Ll+...)F(t,2), Li== I2 (iEO, 1, . . .) 
,==I 

(2.1) 

where Li are linear differential operators of the first order (so 
eristic for L). 

All functions considered here are assumed bounded and fairly 
variation of variables I. We introduce new variables 2~ using 

that system C-2.1) is charact- 

smooth in some domain D of 
the formula 

(2.3) 

where M is some first order operator. It can be shown that in the new variables Eq.(2.2) is 

of the form /4/ 

aptt, 2) eat = XF (t, x) E e-MLeMF (t, z) (2.4) 

where, and in what follows the asterisk at z is omitted for brevity. It should be pointed 

out in this connection that for reverting to the old variables it is necessary to apply the 
inverse transform e-M. 

Let the substitution of variables be close to the identical 

M= aM,+ eaM, + . . . (2.5) 

where Mt is independent of e. 
Using the Hausdorf formula 

ebMLeM=_+ [LM]+ -& ULMI M] -I- . . . 

where IAB] =AB -BA isthecommutator,weobtainHq. (2.4) of a form similar to (2.2) 

e~=XF(1,x)=(Xa+BX1+E~XI+...)F(t,2) eF(t, 2) 

X,-L,, x, = &M,l + L,, XI = &,MIl + I-&M,] + ‘/z l&M,1 M,I + Lt 

Formulas for Xi are of the recurrent type 

x* = lL&fi3 + Ni 

where N, is a known operator when M,, . . . . M+, are specified. 
We can attempt to simplify Eq.(2.6) in comparison with (2.2) by the selection of 

i.e. of Mi. 
The question arises of the possibility of simpler properties of X,. 

(2.6) 

(2.7) 

(2.5), 

The answer is suggested by the following algebraic analogy. Let L and M be square 
matrices. If L, is a diagonal (or reducible to a diagonal) matrix, a simple 
shows that it is possible by the selection of 

reasoning 
M f 

N,) to obtain the property &,X,1 = 0. 
(for an arbitrary a priori specified Matrix 

Generally (when L, is a Jordan or reducible to 
a Jordan matrix) it is possible to obtain IL,IL,[L,...IL,X~])]]= 0, where the degree of commuta- 
tion depends on the largest dimension of the Jordan lattice in L,. 

We introduce operator 1, acting on the first order operators (N) in conformity with for- 
mula l,N = IL,NI and, guided by the explained analogy, assume thatbydefinition the simplest 
property which it is possible to specify for Xi is 

L”vXI = IL,IL,...lL,X,]]] = 0 (2.8) 

We shall indicate here only the sufficient condition for satisfying (2.8). Let operator 
iVi be such that 

%(I) lv, Ni + u,+, (2) &,v+' hri L . . . + 01; (5) lokN, = 0 (2.9) 

where v>O and functions o,(z)(~=v,...,k) 

and uv (I) 
are the invariants of operator L,: 

and do not vanish at any point of the domain D. 
Loo, =o 

(2.8) 
It is then possible to satisfy 
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call equality (2.9) the commutative relation 

Using the Jacobi idmtity I, t.451 = t&-4. Sl --- (.-I" I&E we can prove the following simple 
theorem. 332 each of the operators L, satisfies some commutative reletion with constant co- 
efficients, a commuta3A.ve relations can be also found for each of the operatars 

.v, = A,, N* Ifl IL,M,l -i- Y,tILoMJ M,l i- L,,. . . ” 

appearing in (2.71, ancE, consequently, pxoblem (2.8) is solvable in any order. 

3. The case of arbitrary intitial conditions. For system (1.1) we have 

rd”=W p&-p ( 3 -f- Pa’ - 4Y”:g i W” - 
d 

?f v + G?Y - w’) & 13.2.f 

L1=O, r,=E(-II--a)u”~+r’~jJ-I(--~‘~- *p&j 

Setting &fI 10 we obtain X, = 0. X, L= [&.+I,1 f L,. 
If an operator Me fs such that ;Y, = 0 can be found, system (1.1) is reducad toEuler's 

system with an accuracy he:: and in conformity with the estimate obtained in Sect.1 the 
system remains close to Eulerian during the time t$J 1. We would recall that for this it is 
sufficient only that ed&/dt = O&39). Cwsmquentfystlhe motion rcJHurins close to unperturbed 
one, if it is possible to obtatn &r SG@, X& = 0 fsince in the cansMere& problest L.z = zkar, 
x 3,3 = did-, see (1.9)). 

By virtue of (3.1) we have 

Xg = L&fg f sy’, X? + II L& +-I-Lo((~-a)&+<f} -cr(i--u)kf 

If the quantity S' can be represented in the form L,f, it is pssible to-obtain the 
equality X,r =O, X& = 0 by selecting ~~r.f~~~~~ and it is easily to calculate 

.&zy*= - 2arLoy - (li” - cw) y’ -+ 5 L,p 

which shows that for ar+O, k' -a"++ 0 the quantity y' can be ropresented in the form L,f. 
Excluding the case of total kinetic symmetry &Al we conclude that during the time 

t<l motion of the body remains close to the initial Eulerfan motion for all initial data 
(o #O), possibly except two casesI viz: 11 when at the initial instsnt r is small, and 2) 

when kg -_a*$ is small at t=@. 
These are cases of resonance in Euler's mution (1.9) Isee, e.g., /1,21'). 

4. The first case. Let r be small at the initial instant (so that 0% = p? f @- 1). 
Substituting er for r in (1.1) we obtain the system 

(4.1) 

Calculations are conveniently carrisd out in the new variables 

p, q. r. y’, u 5 py t qy’. v = qy - py’ (4.2) 

in which t, is of the form L,- ~a/~-- oz~*~~~v and (p* 4~. r, u,uz + @yq are tile five inveri- 
ants of the unperturbed problem). 

The operator LI satisfies the mmmsItationei relat&n 

dl,.&$ -I- 1,x, = 0 (I&d = 0) 14.31 

Setting M, = o-~I,L, we obtain in conformity with (4.3) and (2.10) X1 in variablss (4.2) 

Xr=sr 4% ( -P&)+$@+ 10x1=0 (4.4) 

we write, without so far detsm.i.ning Xrr the ordinary system corresponding to (2 -61 

a+earqfO(~q, ++=-earww, 
dr 

"XX +U"WW) 

du 8 T"o (E?), 8 g z -coy -+ 0 (e"), dy" e x=v -I- O(G) 
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For the determination of IJ, Q, r. IL with an accuracy to -8 during times td 1 the terms 

0 (E') can evidently be discarded in the equations of these variables. As regards v and Y", 

we set cpl,, = v f ioy" and obtain 

dv, 
ETsr = iocPi + 0 (E?, E + = - iwcpl +- O(dJ), E -$ - t”&te _t 0 (E’) 

A reasoning similar to that in Sect.1 leads to the conclusion that, when the equality 

X*0 = 0 ten be obtained, the terms 0 (~2) can be rejected at t41 in these equations 
yielding an error of order E. Taking into account that L,o= L,w = 0 and M,o = 0 we 

obtain 

and setting M,0212 = -(I - a) 8~ - ty” we have X,w = 0. 
Thus the motion of the body during times t< 1 is defined in the considered here case 

with an accuracy to -8 by the system of equations 

(4.5) 

Besides the obvious integrals 

0% E p” + qz = const, u = const. vz + W"y"" = const 

which are approximate corollaries of the three classic integrals of motion, system (4.5) has 
the new integral "< 

r2-Ihu =const 
(108 p 

and is integrable in quadratures. 
Note that in this approximation the center of mass deviation (c) from the equatorialplane 

does not affect the motion. 

Remark 4.1. Using the method described in Sect.3 it is possible to obtain approxima- 
tions of any order. This is conveniently done by considering operators @-VA, o-‘h, 0”& in- 

stead of operators b,&YL, (introduction of the multiplier 0 is equivalent to a change of 
time). The commutational relations for o-'&,o-~L, have then constant coefficients. It is 
obviously necessary to bear in mind that after solving the approximate system (and a check of 
accuracy), it is necessary to revert to initial variables using the transform c-" (with an 
accuracy of the order of -e this is evidently unnecessary). 

5. The second case. Investigation of the case when kz-- a29 is small is similar to 
that of the first case. Setting in Eqi.Cl.1) 

r=no+ ES 

we select the constant n so that kz - a29 - E (s- 1). Then 

ns+ 1 a=-, A=B= &C (i>a>+) 

For system (1.1) we then have 

where it is convenient to pass to variables 

p, q. S. I = R (1 - a) qu + napv - oqf, x = U + II (1 - a) of, I, = R (1 - a) pu - mqv - opy,, 

where n and v are the same as in (4.2). Then 

Lo~anO q-&p+) ( 

(5.1) 

(5.2) 

(5.3) 

(5.41 

The commutational relation for L, is 

4WV WI + 5(nao)21Z, + Ii&= 0 
Selecting MI in conformity with (2.10) we obtain XI in variables (5.3) 
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X l-M(q& (5.51 

As in the previous case when t&l perturbations -E: can be neglected in the equa- 
tions for Tr x, I, I,, i.e. the expressions for X2 in these variables are of no interest. In 
conformity with (5.5) the approximate equations for these are 

As for p and 4 we set cpl = P + ip. (P2 = Q - ip and from (5.4) and (5.5) obtain 

dlpl I e d = & ia (no + es) ql,2 + 0 (e2), 
dt 

e $$ = e*X2m + 0 (e3) 

To calculate 'PI 
with an error s e2 
if it is possible to 
the previous one) 

and 'ps with an accuracy to e for t< 1 it is necessary to determine 0 
(see (1.6)). Therefore the terms 0 (e2) can be rejected in (5.7) only 
obtain X,m = 0. But in the case under consideration (as distinct from 

X2’0 - LOM2U) + Lof + && gr 

where the last term is an invariant of L,. A suitable selection of .kf,o yields 

.Y@S 

In accordance with this (with required accuracy) 

$+e(l-c)&zI 

The approximate equations for p and q are now obtained in the form 

(5.8) 

e~==a(nR-tes)q, e$=---a(nSl+er)p (5.9) 

where parameter Q is determined as the solution of Eq.(5.8) which by virtue of (5.6) is in- 
tegrable. 

Thus, ifin the initial instant the angular velocity vector lies close to the cone P2 i- 
q? - rPfn2 p: 0, where n is defined in (5.21, the motion of the body (accurate within e)~during 
time t&l is defined by the system of Eqs.(5.6) and (5.9). 

As in previous ca8es, the system besides the obvious integrals 

o2 = p” C q2 = const, x = const, I? + I,?=const 

(approximate corollaries of classic integrals) the system has a fourth new integral 

sP+$ *=const 

and is integrable in quadratures. 

Remark 5.1. Same as Remark 4.1. 

Remark 5.2. The case when at the initial instant o is small was not considered above. 
It corresponds to fast rotation about the axis of symmetry, and can be investigated in exactly 

the same way as the previous cases, by substitutingin(1.1) eP and eq for p and q :During the time 
t<i the motion proves to remain close to the initial Eulerian, while the nontrivial effect 
(of body precession) is observed only during considerable times (t-Ii/e). 

6. The goemetric interpretation of motion. In the considered here cases it is 
possible to give a geometric interpretation of the motion of the body, which is similar to 
that given by Delauney /5/ to the problem of S. V. Rovalevskaia. 

The first case. First of all, it should be noted the projection Q of the body in- 
stantaneous angular velocity on the vertical is 

Q=fy+ $~'+r~"=++rry" 

If at the initial instant u - I, then u = const (accurate within -e). Thus the 

tip of the instantaneous angular velocity vector moves in a horizontal plane which oscillates 

along the vertical at amplitudes considerably smaller than the mean distance from that plane 
to the body fixed point. The latter means that in this approximation that plane Can be taken 
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as stationary. 
Moreover, by virtue of the integral (With an accuracy to -E). 

o2 = p? + $ = const (6.1) 

the tip of the instantaneous angular velocity vector moves on a cylinder rigidly attached to 
the body. 

But the virtue of the integral 

y-2 - _?A& up = const (6.2) 

the tip of that vector moves on a parabolic cylinder. Thus the directrix of the moving axoid 
is curve r of the intersection of the parabolic and circular cylinders (6.2) and (6.1), re- 
spectively. 

In this approximation the body motion is represented by the rolling of curve r (rigidly 
attached to it) on the stationary horizontal plane. 

Owing to the "narrowness" of the parabolic cylinder in comparison with the circular one, 
this interpretation reduces to the following. The body rotates almost uniformly about the 
vertical (Q = con&), performing almost harmonic nutations (see the two last of Eqs.(4.6)) and 
rotates about the axis of symmetry similarly to a pendulum (see Eqs.(4.6) for r,p, and q). 
And this constitutes the deviation from the motion by inertia. 

The second case. In this case we formulate the geometric interpretation not directly 
to the investigated motion but to the motion of a cylinder H rotating in the body about their 
common axis of symmetry at the angular velocity -_k/s (see (1.7) and (5.1)). When in this 
case the motion is by inertia, the absolute angular velocity (61,) of the H cylinder is con- 
stant and proportional to thekinematic moment vector with the coefficient of proportionality 
equal 1/A. 

Using (5.6), (5.8), (5.9), and (5.1) we determine & taking into account the force of 
gravity. The projection of ox on the axes of the coordinate system rotating together with 
the cylinder (the third axiscoincideswith the axis of symmetry) are (with the stated accur- 
acy and a suitable selection of the initial position of equatorial axes) 

‘, I 
eh ’ ;;i~, R=~+~s+-oo, h,=const (1 -a)? 

a 

Thus the interpretation of the motion of cylinder N is similar to that given in the 
first case. 

By virtue of the integral x =const the tip of the cylinder instantaneous angular veloc- 
ity vector moves in a horizontal plane which in the considered approximation is stationary. 

By virtue of integrals 

I? +- I,? = 02h2 = const (6.3) 

(Z-aa)2 (1 -a)' 
-&z*+(R-~--_+const (6.4) 

a' 

the intersection line of the circular and parabolic cylinders (6.3) and (6.4), respectively, 
is the directrix of the moving axoid. 

As in the first case, the effect of the force of gravity manifests itself by the pendulum- 
like motion of the body about its axis of symmetry. 

The authors thank V. V. Rumiantsev, Iu. A. Ar'khangel'skii, an d A. Ia. Povzner for discus- 
sing the results of this investigation. 
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